4.8 Article

Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

期刊

NATURE NANOTECHNOLOGY
卷 10, 期 12, 页码 1033-1038

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2015.216

关键词

-

资金

  1. Sandia's Laboratory Directed Research and Development program
  2. US Department of Defense
  3. US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated(1-6). Scaling to the infrared or optical part of the spectrum requires ultrafast rectification(7-10) that can only be obtained by direct tunnelling(11,12). Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement(10,13-21). Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region(22). Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxidesemiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband black-body and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mAW(-1) cm(-2) at -0.1 V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据