4.6 Article

Optical density as a probe of carbon nanotubes dispersion in polymers

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 130, 期 3, 页码 1778-1786

出版社

WILEY
DOI: 10.1002/app.39333

关键词

composites; microscopy; morphology; nanotubes; graphene and fullerenes; optical properties

资金

  1. OSEO through the Genesis grant

向作者/读者索取更多资源

The dispersion state of composite materials is known to primarily govern their macroscopic properties. With nanoscopic fillers tiny fluctuations in the interactions among particles may even become the prominent parameter. In this article, the dispersion of carbon nanotubes within a polymer was studied by means of UV-visible spectroscopy and transmitting light microscopy. With thin films, it was found that all the measured absorbances obey a parallel model between the dispersed and the aggregated phases. A method could thus be proposed and validated to gain micrographies of the optical densities within the samples. The Beer-Lambert law was applied to the description of this solid/solid structure, leading to an extinction coefficient for carbon nanotubes comparable to that proposed in solutions. In conclusion, it is shown that one can obtain valuable information from the dispersed phase in optical micrographies, especially the effective filler concentration and a dispersion index in agreement with the literature. (c) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1778-1786, 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据