4.6 Article

Thermal, electrical, and mechanical properties of polyethylenegraphene nanocomposites obtained by in situ polymerization

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 128, 期 5, 页码 2630-2637

出版社

WILEY
DOI: 10.1002/app.38317

关键词

catalysts; polyolefins; graphene and fullerenes; mechanical properties; nanotubes; thermal properties

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  2. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)

向作者/读者索取更多资源

In this study, we investigated the thermal, dynamic mechanical, mechanical, and electrical properties of polyethylene (PE)graphene nanosheet (GNS) nanocomposites, with GNS amounts from 0 to 20 wt %, prepared by in situ polymerization. The thermal stability was evaluated by thermogravimetric analysis (TGA) and showed that the addition of GNSs to the polyolefin matrix increased the onset degradation temperature by 30 degrees C. The electrical conductivity, measured by the impedance technique, presented a critical percolation threshold of 3.8 vol % (8.4 wt %) of GNS. A slight decrease in the tensile strength was found. On the other hand, dynamic mechanical analysis showed an increase in the storage modulus of the nanocomposites compared with that of neat PE. The glass-transition temperature value increased from 111 degrees C (neat PE) to 106 degrees C (PE/6.6 wt % GNS). All of these results show that PE became stiffer and thermally more stable and could be transformed from an insulator to a semiconductor material in the presence of GNSs. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据