4.6 Article

Thermomechanical and shape memory properties of thermosetting shape memory polymer under compressive loadings

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 129, 期 3, 页码 1096-1103

出版社

WILEY
DOI: 10.1002/app.38791

关键词

properties and characterization; mechanical properties; stimuli-sensitive polymers

资金

  1. NASA EPSCoR Research Infrastructure Development (RID) Program
  2. Kentucky Space Grant Consortium (KSGC)
  3. National Science Foundation [CMS-1130381]
  4. Directorate For Engineering
  5. Div Of Civil, Mechanical, & Manufact Inn [1130381, 0959896] Funding Source: National Science Foundation

向作者/读者索取更多资源

Shape memory polymers (SMPs) are an emerging class of active polymers that may be used for a range of reconfigurable structures. In this study, the thermomechanical and shape memory behavior of a thermosetting SMP was investigated using large-scale compressive tests and small-scale indentation tests. Results show that the SMP exhibits different deformation modes and mechanical properties in compression than in tension. In glassy state, the SMP displays significant plastic deformation and has a much higher modulus and yield strength in comparison to those obtained in tension. In rubbery state, the SMP behaves like a hyperelastic material and again has a much higher modulus than that obtained in tension. The SMPs were further conditioned separately in simulated service environments relevant to Air Force missions, namely, (1) exposure to UV radiation, (2) immersion in jet-oil, and (3) immersion in water. The thermomechanical and shape recovery properties of the original and conditioned SMPs were examined under compression. Results show that all the conditioned SMPs exhibit a decrease in Tg as compared to the original SMP. Environmental conditionings generally result in higher moduli and yield strength of the SMPs in the glassy state but lower modulus in the rubbery state. In particular, the UV exposure and water immersion, also weaken the shape recovery abilities of the SMPs. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据