4.6 Article

Thermal, hydrolytic, anticorrosive, and tribological properties of alkyd-silicone hyperbranched resins with high solid content

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 124, 期 5, 页码 3591-3599

出版社

WILEY
DOI: 10.1002/app.34611

关键词

silicone resins; anticorrosion coatings; etherification; thermal stability; friction lowering

向作者/读者索取更多资源

Novel alkyd hyperbranched resins (AHBRs) modified with a Z-6018 silicone (a polysiloxane intermediate) and with high solid content were synthesized by etherification reaction using an acid catalyst. Different molar ratios of AHBR to silicone were used. Structural, thermal, hydrolytic, anticorrosive, and tribological properties were studied using infrared (IR) analysis, nuclear magnetic resonance (NMR), vapor pressure osmometry (VPO), thermogravimetric analysis (TGA), acid value, electrochemical impedance spectroscopy (EIS), and pin-on-disk friction. IR and NMR provide evidence of grafting of the silicone on AHBR; the efficiency of grafting was quantified by TGA. Thermal stability was studied also by acid value analysis. Grafting increases the number average molecular mass, enhances thermal stability, and improves significantly hydrolytic stability. Corrosion resistance on steel is improved by two orders of magnitude, hence our modified materials can be used as highly effective anticorrosion coatings. Grafting lowers dynamic friction dramatically, more so at higher concentrations of silicone. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据