4.6 Article

Development of bacterial cellulose nanowhiskers reinforced EVOH composites by electrospinning

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 124, 期 2, 页码 1398-1408

出版社

WILEY
DOI: 10.1002/app.35052

关键词

bacterial cellulose; electrospinning; nanocomposites; EVOH; melt compounding

资金

  1. Spanish Ministry of Education [FPU grant 1484]
  2. Spanish Ministry of Science and Innovation
  3. MICINN [MAT2009- 14533- C02- 01]
  4. EU

向作者/读者索取更多资源

In the current study, hybrid electrospun ethylene vinyl alcohol (EVOH) fibers reinforced with bacterial cellulose nanowhiskers (BCNW) were developed and characterized. Additionally, electrospinning was suggested as a method for the incorporation of well-dispersed BCNW into an EVOH matrix by melt compounding. With the aim of maximizing the BCNW's loading in the electrospun fibers, an optimized method was applied for generating fibers from solutions containing up to 40 wt % BCNW. As demonstrated by FTIR spectroscopy, it was possible to incorporate BCNW concentrations up to similar to 24 wt %, although a complete incorporation of the nanofiller into the fibers was only achieved with solutions containing up to 20 wt % of the filler, DSC analyses suggested that the incorporation of the nanofiller reduced the crystallinity of the as-obtained EVOH fibers and produced an increase in the glass transition temperature of these during the second heating run. Thermogravimetric analyses showed that even though EVOH protects the nanowhiskers from thermal degradation, the electrospun hybrid fibers present a relatively lower thermal stability than the pure EVOH fibers. FTIR analyses of the samples subjected to different thermal treatments confirmed that the stiffening effect observed by DSC only occurs after melting of the EVOH phase and is cooperative with a partial acid chemical development in the BCNW, which promotes strong chemical interactions between the polymeric matrix and the nanofiller. Finally, the hybrid electrospun fibers were incorporated into pure EVOH by melt compounding to produce composite films. This methodology showed higher stability and dispersion of the BCNW than direct addition of the freeze-dried nanofiller to EVOH. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据