4.8 Article

Predicting nonlinear properties of metamaterials from the linear response

期刊

NATURE MATERIALS
卷 14, 期 4, 页码 379-383

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4214

关键词

-

资金

  1. US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231]
  2. Samsung Scholarship Foundation, Republic of Korea

向作者/读者索取更多资源

The discovery of optical second harmonic generation in 1961 started modern nonlinear optics(1-3). Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule(4,5), allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials(6), have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation(7), new quasi-phase matching capabilities(8,9) and large nonlinear susceptibilities(8-10). However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据