4.8 Article

Conductivity in organic semiconductors hybridized with the vacuum field

期刊

NATURE MATERIALS
卷 14, 期 11, 页码 1123-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NMAT4392

关键词

-

资金

  1. USIAS
  2. ERC [227557, 257305, 307688]
  3. International Center for Frontier Research in Chemistry
  4. ANR Equipex Union [ANR-10-EQPX-52-01]
  5. Labex NIE projects [ANR-11-LABX-0058 NIE]
  6. CSC [ANR-10-LABX-0026 CSC, ANR-10-IDEX-0002-02, RYSQ]
  7. NSF [PIF-1211914, PFC-1125844, CNS-0821794]
  8. EOARD [FA8655-13-1-3032]
  9. Austrian Science Fund (FWF) [P24968-N27]
  10. NCAR
  11. CU Boulder/Denver
  12. Austrian Science Fund (FWF) [P 24968] Funding Source: researchfish
  13. European Research Council (ERC) [307688, 257305] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Much effort over the past decades has been focused on improving carrier mobility in organic thin-film transistors by optimizing the organization of the material or the device architecture. Here we take a different path to solving this problem, by injecting carriers into states that are hybridized to the vacuum electromagnetic field. To test this idea, organic semiconductors were strongly coupled to plasmonic modes to form coherent states that can extend over as many as 105 molecules and should thereby favour conductivity. Experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility. A theoretical quantum model confirms the delocalization of thewavefunctions of the hybridized states and its effect on the conductivity. Our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据