4.6 Article

Thermal Conductivity Models for Single and Multiple Filler Carbon/Liquid Crystal Polymer Composites

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 110, 期 5, 页码 2914-2923

出版社

WILEY
DOI: 10.1002/app.28869

关键词

composites; fillers; liquid-crystalline polymers (LCP); thermal properties

资金

  1. National Science Foundation [DMI-0456537]
  2. Department of Energy [DE-FG02-04ER63821]

向作者/读者索取更多资源

In this study, two different carbon fillers (Thermocarb TC-300 synthetic graphite and Fortafil 243 carbon fiber) were added to Vectra A950RX liquid crystal polymer to produce single filler composites with filler concentrations of up to 80 wt % (71.4 vol %) and multiple filler composites that contained varying concentrations of both synthetic graphite and carbon fiber. The through-plane and in-plane thermal conductivity for each formulation was measured. For the single filler synthetic graphite and carbon fiber composites, the Nielsen model was applied to the experimental through-plane thermal conductivity data. The parameters obtained from the single filler models were then used along with a variation of the original Nielsen model to predict the through-plane thermal conductivities of the multiple filler composites. In-plane thermal conductivity models were also developed using a correlation involving the square root of the product of the composite in-plane and through-plane thermal conductivities. This model was applied to the single filler synthetic graphite and carbon fiber composites. A variation of this model was then used to predict the in-plane thermal conductivity for composites containing both fillers. All the models presented in this work showed good agreement with experimental data. (C) 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110: 2914-2923, 2008

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据