4.6 Article

Nonequilibrium nanoblend membranes for the pervaporation of benzene/cyclohexane mixtures

期刊

JOURNAL OF APPLIED POLYMER SCIENCE
卷 108, 期 5, 页码 2917-2922

出版社

JOHN WILEY & SONS INC
DOI: 10.1002/app.27749

关键词

blends; crosslinking; elastomers; membranes; separation techniques

向作者/读者索取更多资源

Immiscible blends of polymers were cast from solution, and the rate of evaporation was controlled relative to the rate of phase separation to produce different morphologies; upon crosslinking, stable nonequilibrium nanobtends were realized. This process of forced assembly produced useful membrane materials that could be designed for solubility selectivity with the group contribution methodology. Crosslinked ternary blends of nitrile butadiene rubber (NBR), poly(methyl methacrylate) (PMMA), and a tercopolymer of ethylene oxide/epichlorohydrin/allyl glycidyl ether (Hydrin) were examined for use in the separation of benzene from cyclohexane by pervaporation. For a 50 : 50 wt % benzene/cyclohexane feed, blend 811 (containing 80 wt % NBR, 10 wt % Hydrin, and 10 wt % PMMA) gave a separation factor of 7.3 and a normalized flux of 28 kg mu m/m(2) h; such a performance is unmatched in the literature; with the flux being very high for the reported separation factor. Among the samples tested, the flux of the membrane increased as the amount of NBR in the ternary blend decreased; however, the separation factor was not largely affected. Blended samples showed no sign of deformation after 48 h at the operating temperature as compared to pure NBR, which did show evidence of creep. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据