4.5 Review

Muscle blood flow, hypoxia, and hypoperfusion

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 116, 期 7, 页码 852-857

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00620.2013

关键词

hypoxia; vasodilation; exercise; oxygen

资金

  1. National Heart, Lung, and Blood Institute [HL-46493]
  2. Mayo Clinic Center for Translational Science Activities [UL1TR000135-07]

向作者/读者索取更多资源

Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen content, the magnitude of the vasodilator response to exercise changes. It is augmented during hypoxia and blunted during hyperoxia. Because the magnitude of the increased vasodilation during hypoxic exercise tends to keep oxygen delivery to the contracting muscles constant, we have termed this phenomenon compensatory vasodilation. In a series of studies, we have explored metabolic, endothelial, and neural mechanisms that might contribute to compensatory vasodilation. These include the contribution of vasodilating substances like nitric oxide (NO) and adenosine, along with altered interactions between sympathetic vasoconstriction and metabolic vasodilation. We have also compared the compensatory vasodilator responses to hypoxic exercise with those seen when oxygen delivery to contracting muscles is altered by acute reductions in perfusion pressure. A synthesis of our findings indicate that NO contributes to the compensatory dilator responses during both hypoxia and hypoperfusion, while adenosine appears to contribute only during hypoperfusion. During hypoxia, the NO-mediated component is linked to a beta-adrenergic receptor mechanism during lower intensity exercise, while another source of NO is engaged at higher exercise intensities. There are also subtle interactions between beta-adrenergic vasoconstriction and metabolic vasodilation that influence the responses to hypoxia, hyperoxia, and hypoperfusion. Together our findings emphasize both the tight linkage of oxygen demand and supply during exercise and the redundant nature of the vasomotor responses to contraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据