4.8 Article

Sources of and processes controlling CO2 emissions change with the size of streams and rivers

期刊

NATURE GEOSCIENCE
卷 8, 期 9, 页码 696-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/NGEO2507

关键词

-

资金

  1. Kempestiftelserna
  2. Office of Integrative Activities
  3. Office Of The Director [1208909] Funding Source: National Science Foundation

向作者/读者索取更多资源

Carbon dioxide (CO2) evasion from streams and rivers to the atmosphere represents a substantial flux in the global carbon cycle(1-3). The proportions of CO2 emitted from streams and rivers that come from terrestrially derived CO2 or from CO2 produced within freshwater ecosystems through aquatic metabolism are not well quantified. Here we estimated CO2 emissions from running waters in the contiguous United States, based on freshwater chemical and physical characteristics and modelled gas transfer velocities at 1463 United States Geological Survey monitoring sites. We then assessed CO2 production from aquatic metabolism, compiled from previously published measurements of net ecosystem production from 187 streams and rivers across the contiguous United States. We find that CO2 produced by aquatic metabolism contributes about 28% of CO2 evasion from streams and rivers with flows between 0.0001 and 19,000 m(3) s(-1). We mathematically modelled CO2 flux from groundwater into running waters along a stream-river continuum to evaluate the relationship between stream size and CO2 source. Terrestrially derived CO2 dominates emissions from small streams, and the percentage of CO2 emissions from aquatic metabolism increases with stream size. We suggest that the relative role of rivers as conduits for terrestrial CO2 efflux and as reactors mineralizing terrestrial organic carbon is a function of their size and connectivity with landscapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据