4.5 Article

Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 113, 期 9, 页码 1446-1455

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00882.2012

关键词

muscle architecture; tendon stiffness; stretching; Achilles; ultrasound

向作者/读者索取更多资源

Blazevich AJ, Cannavan D, Waugh CM, Fath F, Miller SC, Kay AD. Neuromuscular factors influencing the maximum stretch limit of the human plantar flexors. J Appl Physiol 113: 1446-1455, 2012. First published August 23, 2012; doi:10.1152/japplphysiol.00882.2012.-Maximum joint range of motion is an important parameter influencing functional performance and musculoskeletal injury risk. Nonetheless, a complete description of the muscle architectural and tendon changes that occur during stretch and the factors influencing maximum range of motion is lacking. We measured muscle-tendon elongation and fascicle lengthening and rotation sonographically during maximal plantar flexor stretches in 21 healthy men. Electromyogram (EMG) recordings were obtained synchronously with ultrasound and joint moment data, and H-reflex measurements were made with the ankle at neutral (0 degrees) and dorsiflexed (50% maximal passive joint moment) positions; the maximum H amplitude (normalized to maximum M-wave amplitude; M-max) and H-amplitude elicited at a stimulation intensity that evoked 10% Mmax were obtained. Maximal stretch was accomplished through significant muscle (14.9%; 30 mm) and tendon lengthening (8.4%; 22 mm). There were similar relative changes in fascicle length and angle, but planimetric modeling indicated that the contribution of fascicle rotation to muscle lengthening was small (<4 mm). Subjects with a greater range of motion showed less resistance to stretch and a greater passive joint moment at stretch termination than less flexible subjects (i.e., greater stretch tolerance). Also, greater fascicle rotation accompanied muscle elongation (9.7 vs. 5.9%) and there was a greater tendon length at stretch termination in more flexible subjects. Finally, a moderate correlation between the angle of EMG onset and maximum range of motion was obtained (r = 0.60, P < 0.05), despite there being no difference in H-reflex magnitudes between the groups. Thus clear differences in the neuromuscular responses to stretch were observed between flexible and inflexible subjects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据