4.8 Article

Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate

期刊

NATURE GEOSCIENCE
卷 8, 期 12, 页码 922-U48

出版社

NATURE PORTFOLIO
DOI: 10.1038/NGEO2571

关键词

-

资金

  1. National Basic Research Program of China [2012CB955604, 2014CB953904]
  2. Natural Science Foundation of China [41461164005]
  3. US National Science Foundation

向作者/读者索取更多资源

El Nino/Southern Oscillation (ENSO) is a mode of natural variability that has considerable impacts on global climate and ecosystems(1-4), through rainfall variability in the tropical Pacific and atmospheric teleconnections(5). In response to global warming, ENSO-driven rainfall variability is projected to intensify over the central-eastern Pacific but weaken over the western Pacific, whereas ENSO-related sea surface temperature variability is projected to decrease(6-14). Here, we explore the mechanisms that lead to changes in ENSO-driven rainfall variability in the tropical Pacific in response to global warming, with the help of a moisture budget decomposition for simulations from eighteen state-of-the-art climate models(15). We identify two opposing mechanisms that approximately offset each other: the increase in mean-state moisture content associated with surface warming strengthens ENSO-related rainfall anomalies(7), whereas the projected reduction in ENSO-related variability of sea surface temperatures suppresses rainfall. Two additional effects-spatially non-uniform changes in background sea surface temperatures and structural changes in sea surface temperature related to ENSO-both enhance central-eastern Pacific rainfall variability while dampening variability in the western Pacific, in nearly equal amounts. Our decomposition method may be generalized to investigate how rainfall variability would change owing to nonlinear interactions between background sea surface temperatures and their variability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据