4.5 Article

Catechins attenuate eccentric exercise-induced inflammation and loss of force production in muscle in senescence-accelerated mice

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 111, 期 6, 页码 1654-1663

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01434.2010

关键词

aging; contractile force; downhill running; oxidative stress; SAMP1

向作者/读者索取更多资源

Haramizu S, Ota N, Hase T, Murase T. Catechins attenuate eccentric exercise-induced inflammation and loss of force production in muscle in senescence-accelerated mice. J Appl Physiol 111: 1654-1663, 2011. First published September 8, 2011; doi:10.1152/japplphysiol.01434.2010.-Catechins have a great variety of biological actions. We evaluated the potential benefits of catechin ingestion on muscle contractile properties, oxidative stress, and inflammation following downhill running, which is a typical eccentric exercise, in senescence-accelerated prone mice (SAMP). Downhill running (13 m/min for 60 min; 16 degrees decline) induced a greater decrease in the contractile force of soleus muscle and in Ca2+-ATPase activity in SAMP1 compared with the senescence-resistant mice (SAMR1). Moreover, compared with SAMR1, SAMP1 showed greater downhill running-induced increases in plasma CPK and LDH activity, malondialdehyde, and carbonylated protein as markers of oxidative stress; and in protein and mRNA expression levels of the inflammatory mediators such as tumor necrosis factor-alpha and monocyte chemoattractant protein-1 in muscle. SAMP1 exhibited aging-associated vulnerability to oxidative stress and inflammation in muscle induced by downhill running. Long-term (8 wk) catechin ingestion significantly attenuated the downhill running-induced decrease in muscle force and the increased inflammatory mediators in both plasma and gastrocnemius muscle. Furthermore, catechins significantly inhibited the increase in oxidative stress markers immediately after downhill running, accompanied by an increase in glutathione reductase activity. These findings suggest that long-term catechin ingestion attenuates the aging-associated loss of force production, oxidative stress, and inflammation in muscle after exercise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据