4.5 Article

Effects of exercise training on dendritic morphology in the cardiorespiratory and locomotor centers of the mature rat brain

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 108, 期 6, 页码 1582-1590

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00137.2009

关键词

Golgi staining; dendritic branching; adult plasticity

资金

  1. National Heart, Lung, and Blood Institute [HL-37400]
  2. University of Illinois
  3. University of Illinois at Urbana-Champaign Campus Research Board

向作者/读者索取更多资源

Nelson AJ, Juraska JM, Ragan BG, Iwamoto GA. Effects of exercise training on dendritic morphology in the cardiorespiratory and locomotor centers of the mature rat brain. J Appl Physiol 108: 1582-1590, 2010. First published March 25, 2010; doi:10.1152/japplphysiol.00137.2009.-It has been shown that dendritic branching in neural cardiorespiratory and locomotor centers can be attenuated with exercise training (ET) initiated immediately after weaning. The purpose of this study was to determine whether neuroplastic changes occur within cardiorespiratory and locomotor centers due to ET after maturation. Male Sprague-Dawley rats (21 days old, n = 28) were individually housed in standard cages. At 91 days of age, animals were divided into two groups: untrained (UN; n = 14) and trained (TR; n = 14). The TR group exercised spontaneously for 50 days on running wheels. ET indexes were obtained, including maximal O-2 consumption, percent body fat, resting heart rate, and heart weight-to-body weight ratios. The brain was processed with a modified Golgi-Cox procedure. Impregnated neurons from the periaqueductal gray (PAG), posterior hypothalamic area (PH), nucleus of the tractus solitarius (NTS), cuneiform nucleus (CnF), rostral ventrolateral medulla, nucleus cuneatus, and cerebral cortex were examined. Neurons were traced and analyzed using the Sholl concentric ring analysis of dendritic branching. The mean total number of dendritic intersections with the concentric rings per neuron per animal were compared between UN and TR groups. There were significant differences between UN and TR groups in the PH, PAG, CnF, and NTS in the total number of intersections per animal. In some areas, the effect size was smaller when ET was initiated in mature animals, possibly related to their relatively reduced activity levels. In conclusion, the adult rat brain remains dynamic and adapts to chronic ET. However, some brain areas appear to be more affected if ET is initiated in early postnatal development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据