4.5 Article

Effects of spaceflight on innate immune function and antioxidant gene expression

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 106, 期 6, 页码 1935-1942

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.91361.2008

关键词

immunity; cytokines; stress; microgravity

资金

  1. NASA [NAG2-1274]
  2. National Institutes of Health [AI052206, RR16475]

向作者/读者索取更多资源

Baqai FP, Gridley DS, Slater JM, Luo-Owen X, Stodieck LS, Ferguson V, Chapes SK, Pecaut MJ. Effects of spaceflight on innate immune function and antioxidant gene expression. J Appl Physiol 106: 1935-1942, 2009. First published April 2, 2009; doi:10.1152/japplphysiol.91361.2008.-Spaceflight conditions have a significant impact on a number of physiological functions due to psychological stress, radiation, and reduced gravity. To explore the effect of the flight environment on immunity, C57BL/6NTac mice were flown on a 13-day space shuttle mission (STS-118). In response to flight, animals had a reduction in liver, spleen, and thymus masses compared with ground (GRD) controls (P < 0.005). Splenic lymphocyte, monocyte/macrophage, and granulocyte counts were significantly reduced in the flight (FLT) mice (P < 0.05). Although spontaneous blastogenesis of splenocytes in FLT mice was increased, response to lipopolysaccharide (LPS), a B-cell mitogen derived from Escherichia coli, was decreased compared with GRD mice (P < 0.05). Secretion of IL-6 and IL-10, but not TNF-alpha, by LPS-stimulated splenocytes was increased in FLT mice (P < 0.05). Finally, many of the genes responsible for scavenging reactive oxygen species were upregulated after flight. These data indicate that exposure to the spaceflight environment can increase anti-inflammatory mechanisms and change the ex vivo response to LPS, a bacterial product associated with septic shock and a prominent Th1 response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据