4.5 Article

In vivo oxidative capacity varies with muscle and training status in young adults

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 107, 期 3, 页码 873-879

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00260.2009

关键词

mitochondrial capacity; magnetic resonance spectroscopy; training status; phosphocreatine recovery; gender

资金

  1. National Institute on Aging [R01 AG-21094, K02 AG-023582]
  2. American College of Sports Medicine Student Grant

向作者/读者索取更多资源

Larsen RG, Callahan DM, Foulis SA, Kent-Braun JA. In vivo oxidative capacity varies with muscle and training status in young adults. J Appl Physiol 107: 873-879, 2009. First published June 25, 2009; doi:10.1152/japplphysiol.00260.2009.-It is well established that exercise training results in increased muscle oxidative capacity. Less is known about how oxidative capacities in distinct muscles, in the same individual, are affected by different levels of physical activity. We hypothesized that 1) trained individuals would have higher oxidative capacity than untrained individuals in both tibialis anterior (TA) and vastus lateralis (VL) and 2) oxidative capacity would be higher in TA than VL in untrained, but not in trained, individuals. Phosphorus magnetic resonance spectroscopy was used to measure the rate of phosphocreatine recovery (k(PCr)), which reflects the rate of oxidative phosphorylation, following a maximal voluntary isometric contraction of the TA and VL in healthy untrained (7 women, 7 men, 25.7 +/- 3.6 yr; mean +/- SD) and trained (5 women, 7 men, 27.5 +/- 3.4 yr) adults. Daily physical activity levels were measured using accelerometry. The trained group spent threefold more time (similar to 90 vs. similar to 30 min/day; P < 0.001) in moderate to vigorous physical activity (MVPA). Overall, kPCr was higher in VL than in TA (P = 0.01) and higher in trained than in untrained participants (P < 0.001). The relationship between kPCr and MVPA was more robust in VL (r = 0.64, P = 0.001, n = 25) than in TA (r = 0.38, P = 0.06, n = 25). These results indicate greater oxidative capacity in vivo in trained compared with untrained individuals in two distinct muscles of the lower limb and provide novel evidence of higher oxidative capacity in VL compared with TA in young humans, irrespective of training status. The basis for this difference is not known at this time but likely reflects a difference in usage patterns between the muscles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据