4.5 Article

Age-related differences in skeletal muscle insulin signaling: the role of stress kinases and heat shock proteins

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 105, 期 3, 页码 839-848

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00148.2008

关键词

glucose uptake; insulin receptor substrate-1; serine phosphorylation; stress kinases; heat shock protein 72; heat shock protein 25

向作者/读者索取更多资源

Aging is associated with an increase in insulin resistance in skeletal muscle, yet the underlying mechanism is not well established. We hypothesize that with aging, a chronic increase in stress kinase activation, coupled with a decrease in oxidative capacity, leads to insulin resistance in skeletal muscle. In aged (24 mo old) and young (3 mo old) Fischer 344 rats, 2-deoxyglucose uptake and insulin signaling [as measured by phosphorylation of insulin receptor substrate-1 (IRS-1), Akt (protein kinase B), and Akt substrate of 160 kDa (AS160)] decreased significantly with age. Activation of, c-Jun NH2-terminal kinase (JNK), glycogen serine kinase-3 beta (GSK-3 beta), and degradation of I kappa B beta by the upstream inhibitor of kappa B kinase (IKK beta), as measured by Western blot analysis, were increased with age in both soleus and epitrochlearis (Epi) muscles. However, much higher activation of these kinases in Epi muscles from young rats compared with soleus results in a greater effect of these kinases on insulin signaling in fast-twitch muscle with age. Heat shock protein (HSP) 72 expression and phosphorylation of HSP25 were higher in soleus compared with Epi muscles, and both parameters decreased with age. Age and fiber type differences in cytochrome oxidase activity are consistent with observed changes in HSP expression and activation. Our results demonstrate a significant difference in the ability of slow-twitch and fast-twitch muscles to respond to insulin and regulate glucose with age. A greater constitutive HSP expression and lower stress kinase activation may account for the ability of slow-twitch muscles to preserve the capacity to respond to insulin and maintain glucose homeostasis with age.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据