4.5 Article

TNF-α acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 104, 期 3, 页码 694-699

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00898.2007

关键词

cytokine; respiratory muscle; oxidative stress; weakness; diaphragm

资金

  1. NHLBI NIH HHS [R01-HL-59878] Funding Source: Medline

向作者/读者索取更多资源

Tumor necrosis factor-alpha (TNF) diminishes specific force of skeletal muscle. To address the mechanism of this response, we tested the hypothesis that TNF acts via the type 1 (TNFR1) receptor subtype to increase oxidant activity and thereby depress myofibrillar function. Experiments showed that a single intraperitoneal dose of TNF (100 mu g/kg) increased cytosolic oxidant activity (P < 0.05) and depressed maximal force of male ICR mouse diaphragm by similar to 25% within 1 h, a deficit that persisted for 48 h. Pretreating animals with the antioxidant Trolox (10 mg/kg) lessened oxidant activity (P < 0.05) and abolished contractile losses in TNF-treated muscle (P < 0.05). Genetic TNFR1 deficiency prevented the rise in oxidant activity and fall in force stimulated by TNF; type 2 TNF receptor deficiency did not. TNF effects on muscle function were evident at the myofibrillar level. Chemically permeabilized muscle fibers from TNF-treated animals had lower maximal Ca2+-activated force (P < 0.02) with no change in Ca2+ sensitivity or shortening velocity. We conclude that TNF acts via TNFR1 to stimulate oxidant activity and depress specific force. TNF effects on force are caused, at least in part, by decrements in function of calcium-activated myofibrillar proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据