4.6 Article

Very low surface recombination velocity in n-type c-Si using extrinsic field effect passivation

期刊

JOURNAL OF APPLIED PHYSICS
卷 116, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4892099

关键词

-

资金

  1. Clarendon Fund
  2. Corpus Christi College

向作者/读者索取更多资源

In this article, field-effect surface passivation is characterised as either intrinsic or extrinsic, depending on the origin of the charges present in passivation dielectric layers. The surface recombination velocity of float zone, 1 Omega cm, n-type silicon was reduced to 0.15 cm/s, the lowest ever observed for a passivating double layer consisting of thermally grown silicon dioxide and plasma enhanced chemical vapour deposited silicon nitride. This result was obtained by enhancing the intrinsic chemical and field-effect passivation of the dielectric layers with uniform, extrinsic field-effect passivation induced by corona discharge. The position and stability of charges, both intrinsic and extrinsic, were characterised and their passivation effect was seen stable for two months with surface recombination velocity < 2 cm/s. Finally, the intrinsic and extrinsic components of passivation were analysed independently. Hydrogenation occurring during nitride deposition was seen to reduce the density of interfacial defect states from similar to 5 x 10 10 cm(-2) eV(-1) to similar to 5 x 10(9) cm(-2) eV(-1), providing a decrease in surface recombination velocity by a factor of 2.5. The intrinsic charge in the dielectric double layer provided a decrease by a factor of 4, while the corona discharge extrinsic field-effect passivation provided a further decrease by a factor of 3. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据