4.6 Article

Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: Case of Cu2ZnSn(SxSe1-x)4 and Cu2Zn(SnyGe1-y)(SxSe1-x)4

期刊

JOURNAL OF APPLIED PHYSICS
卷 115, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4882119

关键词

-

资金

  1. NSF IGERT [0903670-DGE]
  2. DOE SunShot [DE-EE0005328]

向作者/读者索取更多资源

Detailed electrical characterization of nanoparticle based Cu2ZnSn(SxSe1-x)(4) (CZTSSe) and Cu2Zn(SnyGe1-y)(SxSe1-x)(4) (CZTGeSSe) solar cells has been conducted to understand the origin of device limitations in this material system. Specifically, temperature dependent current-voltage analysis has been considered, with particular application to the characterization of solar cells with non-ideal device behavior. Due to the presence of such non-ideal device behavior, typical analysis techniques-commonly applied to kesterite-type solar cells-are found to be insufficient to understand performance limitations, and an analysis methodology is presented to account for the non-idealities. Here, the origin of non-ideal device behavior is chiefly considered in terms of electrostatic and band gap potential fluctuations, low minority carrier lifetimes, temperature dependent band edges, high surface/bulk recombination rates, and tunneling enhanced recombination. For CZTSSe and CZTGeSSe, the main limitations to improved device performance (voltage limitations) are found to be associated with significant EA deficits (E-A-E-G) at 300 K, large ideality factors, and voltage-dependent carrier collection, which we associate with the bulk material properties of the absorbers. The material origin of these non-ideal electrical properties is considered. Additionally, for CZTGeSSe, the effect of Ge-incorporation on the electrical properties of the solar cells is discussed, with improvements in the electrical properties characterized for the Ge-alloyed devices. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据