4.6 Article

A passively tunable acoustic metamaterial lens for selective ultrasonic excitation

期刊

JOURNAL OF APPLIED PHYSICS
卷 116, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4894279

关键词

-

向作者/读者索取更多资源

In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques applied to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据