4.6 Article

Enhanced magnetoresistance induced by oxygen deficiency in La0.4Ca0.6MnO3-δ oxides

期刊

JOURNAL OF APPLIED PHYSICS
卷 115, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4868315

关键词

-

向作者/读者索取更多资源

We report electrical features and magnetoresistance behavior of the oxygen deficient La0.4Ca0.6MnO3-delta perovskites (delta = 0, 0.15, and 0.2). These samples will be referred to as S0, S15, and S20, respectively. The dependence of electrical transport on temperature and magnetic field is systematically investigated between 2K and 400K in magnetic field ranging up to 5 T. The parent compound shows a stable charge ordering/antiferromagnetic state with a semiconductor-like behavior in all considered temperature range. The variable range hopping and thermally activated hopping models are found to fit well with the electrical resistivity data at low and high temperatures, respectively. Oxygen deficiency tends to weaken the charge ordering and induce ferromagnetism and metallicity at low temperature. Metal insulator transition appears at higher fields for lower oxygen deficit (S15 sample) and without field for the S20 sample. The resistivity data for S15 sample are discussed in the framework of the variable-range hopping model. Abnormal transport properties were observed in the S20 sample, characterized by the double metal-insulator transitions and low minimum behavior. These results are discussed in terms of phenomenological percolation model, based on the phase segregation of ferromagnetic metallic clusters and paramagnetic insulating regions. While the parent compound shows no magnetoresistance, a large magnetoresistance is observed in the deficient samples at low temperature reaching 90% and 75% at 2 T for S15 and S20 samples, respectively. Noticeably, these values reached 98% and 91% at 5 T. The appearance of colossal magnetoresistance is attributed to the spin dependent hopping between spin clusters and/or ferromagnetic domains. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据