4.6 Article

Direct femtosecond laser ablation of copper with an optical vortex beam

期刊

JOURNAL OF APPLIED PHYSICS
卷 116, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4896068

关键词

-

资金

  1. PRIN Project OXIDE
  2. European Union [264098-MAMA, PCIG12-GA-2012-326499-FOXIDUET (FP7-PEOPLE-2012-CIG)]

向作者/读者索取更多资源

Laser surface structuring of copper is induced by laser ablation with a femtosecond optical vortex beam generated via spin-to-orbital conversion of the angular momentum of light by using a q-plate. The variation of the produced surface structures is studied as a function of the number of pulses, N, and laser fluence, F. After the first laser pulse (N = 1), the irradiated surface presents an annular region characterized by a corrugated morphology made by a rather complex network of nanometer-scale ridges, wrinkles, pores, and cavities. Increasing the number of pulses (2 < N < 100), the surface texture progressively evolves towards larger structures, while the central, non-ablated area is gradually decorated by nanoparticles produced during laser ablation. At large number of pulses (200 < N < 1000), a micro-tip with a nanostructured surface forms in the center of the irradiated area, which eventually disappears at still larger number of pulses (N > 1000) and a deep crater is formed. The nanostructure variation with the laser fluence, F, also evidences an interesting dependence, with a coarsening of the structure morphology as F increases. Our experimental findings demonstrate that direct femtosecond laser ablation with optical vortex beams produces interesting patterns not achievable by the more standard beams with a Gaussian intensity profile. They also suggest that appropriate tuning of the experimental conditions (F, N) can allow generating micro- and/or nano-structured surface for any specific application. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据