4.6 Article

Energy minimization mechanisms of semi-coherent interfaces

期刊

JOURNAL OF APPLIED PHYSICS
卷 116, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4889927

关键词

-

资金

  1. US Department of Energy, Office of Science, Office of Basic Energy Sciences
  2. Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450]

向作者/读者索取更多资源

In this article, we discussed energy minimization mechanisms of semi-coherent interfaces based on atomistic simulations and dislocation theory. For example, of {111} interfaces between two face centered cubic (FCC) crystals, interface comprises of two stable structures (normal FCC stacking structure and intrinsic stacking fault structure), misfit dislocations, and misfit dislocation intersections or nodes (corresponding to the high energy stacking fault (HESF) structure). According to atomistic simulations of four interfaces, we found that (1) greater spacing between misfit dislocations and/or larger slopes of generalized stacking fault energy at the stable interface structures leads to a narrower dislocation core and a higher state of coherency in the stable interfaces; (2) the HESF region is relaxed by the relative rotation and dilation/compression of the two crystals at the node. The crystal rotation is responsible for the spiral feature at the vicinity of a node and the dilation/compression is responsible for the creation of the free volume at a node; (3) the spiral feature is gradually frail and the free volume decreases with decreasing misfit dislocation spacing, which corresponds to an increase in lattice mismatch and/or a decrease in lattice rotation. Finally, the analysis method and energy minimization mechanisms explored in FCC {111} semi-coherent interfaces are also applicable for other semi-coherent interfaces. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据