4.6 Article

An improved model for nanosecond pulsed laser ablation of metals

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4818513

关键词

-

向作者/读者索取更多资源

A model is presented for the ablation of metals by nanosecond laser pulses, based on one-dimensional heat flow with temperature dependent material properties. A numerical optical calculation is introduced to account for laser beam absorption in the target, utilizing established matrix methods for electromagnetic plane wave propagation in multi-layered media. By including the effects of reflection from the dielectric-metal interface, the fall in reflectivity of aluminum during nanosecond laser pulses above the phase explosion threshold is found to be approximately twice that calculated in previous works. A simulated shielding coefficient is introduced to account for reflection and absorption of the incident laser beam by the ablation products. With these additions to foregoing models, good agreement between calculated and published experimental ablation data is attained for aluminum, both in terms of ablation threshold and depth. An investigation is subsequently carried out into the effects of laser wavelength, pulse duration and target thickness on the phase explosion threshold of aluminum. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据