4.6 Article

Material selection considerations for coaxial, ferrimagnetic-based nonlinear transmission lines

期刊

JOURNAL OF APPLIED PHYSICS
卷 113, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4792214

关键词

-

资金

  1. U.S. Office of Naval Research (ONR)

向作者/读者索取更多资源

The growing need for solid-state high power microwave sources has renewed interest in nonlinear transmission lines (NLTLs). This article focuses specifically on ferrimagnetic-based NLTLs in a coaxial geometry. Achieved peak powers exceed 30 MW at 30 kV incident voltage with rf power reaching 4.8 MW peak and pulse lengths ranging from 1-5 ns. The presented NLTL operates in S-band with the capability to tune the center frequency of oscillation over the entire 2-4 GHz band and bandwidths of approximately 30%, placing the NLTL into the ultra-wideband-mesoband category of microwave sources. Several nonlinear materials were tested and the relationship between NLTL performance and material parameters is discussed. In particular, the importance of the material's ferromagnetic resonance linewidth and its relationship to microwave generation is highlighted. For a specific nonlinear material, it is shown that an optimum relation between incident pulse magnitude and static bias magnitude exists. By varying the nonlinear material's bias magnetic field, active delay control was demonstrated. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792214]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据