4.6 Article

Electric winds driven by time oscillating corona discharges

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4824748

关键词

-

资金

  1. Defense Advanced Research Projects Agency [W944NF-09-1-0005]
  2. Non-equilibrium Energy Research Center (NERC)-an Energy Frontier Research Center
  3. U.S. Department of Energy [DE-SC0000989]
  4. Iowa State University

向作者/读者索取更多资源

We investigate the formation of steady gas flows-so-called electric winds-created by point-plane corona discharges driven by time oscillating (ac) electric fields. By varying the magnitude and frequency of the applied field, we identify two distinct scaling regimes: (i) a low frequency (dc) regime and (ii) a high frequency (ac) regime. These experimental observations are reproduced and explained by a theoretical model describing the transport and recombination of ions surrounding the discharge and their contribution to the measured wind velocity. The two regimes differ in the spatial distribution of ions and in the process by which ions are consumed. Interestingly, we find that ac corona discharges generate strong electric forces localized near the tip of the point electrode, while dc corona discharges generate weaker forces distributed throughout the interelectrode region. Consequently, the velocity of the electric winds (>1 m/s) generated by ac discharges is largely independent of the position of the counter electrode. The unified theoretical description of dc and ac electric winds presented here reconciles previous observations of winds driven by dc corona and ac dielectric barrier discharges; insights from the model should also prove useful in the design of other plasma actuators. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据