4.6 Article

Atomic resolution chemical bond analysis of oxygen in La2CuO4

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4819397

关键词

-

资金

  1. JSPS from the Ministry of Education, Culture, Sports, Science and Technology, Japan [23-51]
  2. Australian Research Council [DP110102228]
  3. Grants-in-Aid for Scientific Research [25106003, 25886008] Funding Source: KAKEN

向作者/读者索取更多资源

The distorted CuO6 octahedron in La2CuO4 was studied using aberration-corrected scanning transmission electron microscopy at atomic resolution. The near-edge structure in the oxygen K-edge electron energy-loss spectrum was recorded as a function of the position of the electron probe. After background subtraction, the measured spectrum image was processed using a recently developed inversion process to remove the mixing of signals on the atomic columns due to elastic and thermal scattering. The spectra were then compared with first-principles band structure calculations based on the local-density approximation plus on-site Coulomb repulsion (LDA + U) approach. In this article, we describe in detail not only anisotropic chemical bonding of the oxygen 2p state with the Cu 3d state but also with the Cu 4p and La 5d/4f states. Furthermore, it was found that buckling of the CuO2 plane was also detectable at the atomic resolution oxygen K-edge. Lastly, it was found that the effects of core-hole in the O K-edge were strongly dependent on the nature of the local chemical bonding, in particular, whether it is ionic or covalent. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据