4.6 Article

Graphene-based non-Boolean logic circuits

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 15, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4824828

关键词

-

资金

  1. Semiconductor Research Corporation (SRC)
  2. Defense Advanced Research Project Agency (DARPA) through STARnet Center for Function Accelerated nanoMaterial Engineering (FAME)
  3. National Science Foundation (NSF)
  4. SRC Nanoelectronic Research Initiative (NRI) [2204.001, NSF ECCS-1124733, NEB-2020]
  5. NSF [NSF CCF-1217382]

向作者/读者索取更多资源

Graphene revealed a number of unique properties beneficial for electronics. However, graphene does not have an energy band-gap, which presents a serious hurdle for its applications in digital logic gates. The efforts to induce a band-gap in graphene via quantum confinement or surface functionalization have not resulted in a breakthrough. Here we show that the negative differential resistance experimentally observed in graphene field-effect transistors of conventional design allows for construction of viable non-Boolean computational architectures with the gapless graphene. The negative differential resistance-observed under certain biasing schemes-is an intrinsic property of graphene, resulting from its symmetric band structure. Our atomistic modeling shows that the negative differential resistance appears not only in the drift-diffusion regime but also in the ballistic regime at the nanometer-scale-although the physics changes. The obtained results present a conceptual change in graphene research and indicate an alternative route for graphene's applications in information processing. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据