4.6 Article

Ground state properties of a two-electron system in a three-dimensional GaAs quantum dot with Gaussian confinement in a magnetic field

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4816314

关键词

-

向作者/读者索取更多资源

The ground state properties of a system of two interacting electrons trapped in a three-dimensional GaAs quantum dot with Gaussian confinement under the influence of an externally applied magnetic field (B) are obtained using a variational method with a Chandrashekhr-like wave function containing only three variational parameters and involving a modified Jastrow correlation factor. The phase diagram for the two-electron singlet bound state is obtained in the parameter space of the confinement potential. The pair density function is calculated as a function of the electron-electron separation for a couple of magnetic fields and its peak positions are obtained to study the behaviour of the size of the electron pair as a function of the confinement length and the depth of the potential. The size of the electron pair is also obtained directly by calculating the expectation value of the electron-electron separation with respect to the system wave function. Finally, the behaviour of the ground state energy is studied as a function of the electron effective mass and the dielectric constant of a quantum dot. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据