4.6 Article

Influence of the packing fraction and host matrix on the magnetoelastic anisotropy in Ni nanowire composite arrays

期刊

JOURNAL OF APPLIED PHYSICS
卷 114, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4822307

关键词

-

资金

  1. CONACYT [166089, CB-177896, CB-105568]
  2. Research Science Foundation of Belgium (FRS-FNRS)

向作者/读者索取更多资源

The influence of the packing fraction on thermally induced magnetoelastic effects has been studied in Ni nanowires embedded in polycarbonate, poly(vinylidene difluoride), and alumina nanoporous membranes of different porosities for temperatures between 77 K and 345 K. For nanowires embedded in polymer membranes, the contrasting shift in the ferromagnetic resonance frequency when the temperature is either above or below ambient temperature is consistent with the occurrence of uniaxial magnetoelastic anisotropy effects due to the large thermal expansion coefficient mismatch between the metal nanowires and the membrane. A model which considers the influence of the nanowires packing fraction and the membrane material on the magnetoelastic effects, arising from the matrix-assisted deformation process, is proposed. The model is able to successfully explain the experimentally observed effects for the Ni nanowire arrays embedded in the different porous membranes and their variation with the packing fraction. The possibility to modulate the magnetic anisotropy of such nanocomposites by an appropriate choice of membrane material, packing fraction, and sample temperature is of considerable importance to achieve magnetically tunable devices. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据