4.6 Article

A simple model for ion injection and transport in conducting polymers

期刊

JOURNAL OF APPLIED PHYSICS
卷 113, 期 24, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4812236

关键词

-

资金

  1. CG-13
  2. Microvitae Technologies
  3. region PACA

向作者/读者索取更多资源

We present a simple analytical model that describes ion transport in a planar junction between an electrolyte and a conducting polymer film. When ions are injected in the film, holes recede, leading to partial dedoping of the film. This is modeled by two resistors in series, an ionic one for the dedoped part and an electronic one for the still-doped part. We show that analytical predictions can be made for the temporal evolution of the drift length of ions and the current, variables that could be assessed experimentally. A numerical model based on forward time iteration of drift/diffusion equations is used to validate these predictions. Using realistic materials parameters, we find that the analytical model can be used to obtain the ion drift mobility in the film, and as such, it might be useful towards the development of structure vs. ion transport properties relationships in this important class of electronic materials. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据