4.6 Article

Ultrafast switching in wetting properties of TiO2/YSZ/Si(001) epitaxial heterostructures induced by laser irradiation

期刊

JOURNAL OF APPLIED PHYSICS
卷 113, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4790327

关键词

-

资金

  1. US National Science Foundation
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [0803663] Funding Source: National Science Foundation

向作者/读者索取更多资源

We have demonstrated dark hydrophilicity of single crystalline rutile TiO2(100) thin films, in which rapid switching from a hydrophobic to a hydrophilic surface was achieved using nanosecond excimer laser irradiation. The TiO2/YSZ/Si(001) single crystalline heterostructures were grown by pulsed laser deposition and were subsequently irradiated by a single pulse of a KrF excimer laser at several energies. The wettability of water on the surfaces of the samples was evaluated. The samples were hydrophobic prior to laser annealing and turned hydrophilic after laser annealing. Superhydrophilic surfaces were obtained at higher laser energy densities (e.g., 0.32 J.cm(-2)). The stoichiometries of the surface regions of the samples before and after laser annealing were examined using XPS. The results revealed the formation of oxygen vacancies on the surface, which are surmised to be responsible for the observed superhydrophilic behavior. According to the AFM images, surface smoothening was greater in films that were annealed at higher laser energy densities. The samples exhibited hydrophobic behavior after being placed in ambient atmosphere. The origin of laser induced wetting behavior was qualitatively understood to stem from an increase of point defects near the surface, which lowered the film/water interfacial energy. This type of rapid hydrophobic/hydrophilic switching may be used to facilitate fabrication of electronic and photonic devices with novel properties. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790327]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据