4.6 Article

Forming delocalized intermediate states with realistic quantum dots

期刊

JOURNAL OF APPLIED PHYSICS
卷 111, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3691113

关键词

-

向作者/读者索取更多资源

Experiments and theoretical models suggest that the performance of intermediate band solar cells based on quantum dots (QDs) will be enhanced by the formation of delocalized intermediate bands. However, reasonable device performance has only been achieved when the QD separation is large and energy states are localized to individual QDs. In this paper we analyze the formation of delocalized bands in a realistic QD material that has inhomogeneously distributed energy levels. We calculate the QD uniformity or barrier thickness necessary to create delocalized states in realistic materials and propose a design to create delocalized states while including strain balancing layers. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691113]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据