4.6 Article

Tailoring thermal expansion in metal matrix composites blended by antiperovskite manganese nitrides exhibiting giant negative thermal expansion

期刊

JOURNAL OF APPLIED PHYSICS
卷 112, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4759121

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [22360291]
  2. NEDO, Japan [08A19009d]
  3. Grants-in-Aid for Scientific Research [22360291] Funding Source: KAKEN

向作者/读者索取更多资源

We controlled thermal expansion of metal matrix composites (MMCs) that had been blended using antiperovskite manganese nitrides with giant negative thermal expansion (NTE). The NTE of the manganese nitrides, which is isotopic, is greater than -30 ppm K-1 in alpha (coefficient of linear thermal expansion), which is several or ten times as large as that of conventional NTE materials. These advantages of nitrides are desirable for practical application as a thermal-expansion compensator, which can suppress thermal expansion of various materials including metals and even plastics. Powder metallurgy using pulsed electric current sintering enables us to reduce temperatures and times for fabrication of MMCs. Consequently, chemical reactions between matrix (Al, Ti, Cu) and filler can be controlled and even high-melting-point metals can be used as a matrix. Thermal expansion of these MMCs is tunable across widely various alpha values, even negative ones, with high reproducibility. These composites retain a certain amount of voids. Formation of rich and stable interfacial bonding, overcoming large mismatch in thermal expansion, remains as a problem that is expected to hinder better composite performance. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4759121]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据