4.6 Article

Spin-glass freezing of maghemite nanoparticles prepared by microwave plasma synthesis

期刊

JOURNAL OF APPLIED PHYSICS
卷 111, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4724348

关键词

-

向作者/读者索取更多资源

Magnetic properties of 6 nm maghemite nanoparticles (prepared by microwave plasma synthesis) have been studied by ac and dc magnetic measurements. Structural characterization includes x-ray diffraction and transmission electron microscopy. The temperature scans of zero field cooled/field cooled (ZFC/FC) magnetization measurements show a maximum at 75 K. The ZFC/FC data are fitted to the Brown-Neel relaxation model using uniaxial anisotropy and a log-normal size-distribution function to figure out the effective anisotropy constant K-eff. K-eff turns out to be larger than the anisotropy constant of bulk maghemite. Fitting of the ac susceptibility to an activated relaxation process according to the Arrhenius law provides unphysical values of the spin-flip time and activation energy. A power-law scaling shows a satisfactory fit to the ac susceptibility data and the dynamic critical exponent (zv approximate to 10) takes value between 4 and 12 which is typical for the spin-glass systems. The temperature dependence of coercivity and exchange bias shows a sharp increase toward low temperatures which is due to enhanced surface anisotropy. The source of this enhanced magnetic anisotropy comes from the disordered surface spins which get frozen at low temperatures. Memory effects and thermoremanent magnetization experiments also support the existence of spin-glass behaviour. All these magnetic measurements signify either magnetic blocking or surface spin-glass freezing at high and low temperatures, respectively. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724348]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据