4.6 Article

Band bending and determination of band offsets in amorphous/crystalline silicon heterostructures from planar conductance measurements

期刊

JOURNAL OF APPLIED PHYSICS
卷 112, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4769736

关键词

-

资金

  1. European Community [211821]
  2. OSEO's Solar Nanocrystal project
  3. ADEME
  4. Supelec
  5. French-German University

向作者/读者索取更多资源

An analytical model for the calculation of the band bending in amorphous/crystalline silicon (a-Si:H/c-Si) heterojunctions is presented and validated by comparison with full numerical simulations. The influence of the various structure properties and parameters, such as the density of states in bulk a-Si:H or at interface defects, the position of the Fermi level in a-Si:H, the temperature dependence of band gaps, is investigated. Significant band offsets imply the presence of a strong inverted layer at the c-Si surface of both (p) a-Si:H/(n) c-Si and (n) a-Si:H/(p) c-Si structures, forming two-dimensional hole and electron gases, respectively. This leads to high sheet carrier densities that have been evidenced from planar conductance measurements. Experimental data obtained on samples coming from various research institutes are analyzed with our model in order to extract the band offsets. We find that the valence band offset ranges between 0.32 and 0.42 eV with an average value at 0.36 eV; the conduction band offset is found between 0.08 and 0.26 eV with a mean value at 0.15 eV. These values are discussed in the frame of the branch point theory for band line-up; they imply that the branch point energy in a-Si:H is almost independent of doping and lies close to mid-gap. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769736]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据