4.6 Article

An easy way to prepare layered nanoplatelets: Fragment of nanostructured multilayers

期刊

JOURNAL OF APPLIED PHYSICS
卷 111, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4728178

关键词

-

向作者/读者索取更多资源

In this study, we present an easy way to create layered-nanoplatelets with well-defined geometry by controlling the cracking process of nanostructured multilayers. The geometrical dimension of layered-nanoplatelets is determined by the multilayer intrinsic size, the total strain, and the elastic mismatch between the substrate and multilayers, which was analyzed by statistical approach. Fracture behaviors characterized by critical strain to nucleate microcrack, fracture toughness, and evolution of fragment width were also studied for nanostructured Cu/Cr multilayers with modulation period (lambda) spanning from of 5 to 250 nm and were quantified based on linear elastic theory and shear-lag theory. An optimal modulation period seems to be likely favorable for maximizing the ductility, strength, and fracture toughness of the nanolayered materials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728178]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据