4.6 Article

Effect of compositional variation on the shock wave response of bulk amorphous alloys

期刊

JOURNAL OF APPLIED PHYSICS
卷 112, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4754843

关键词

-

资金

  1. DOE/NNSA [DE-FG52-97SF21388, DE-NA0000970]

向作者/读者索取更多资源

The objective of this work was to determine how variations in composition influence the shock wave response of bulk amorphous alloys (BAAs). Toward this end, (Hf,Zr)-based bulk amorphous alloy specimens (nominal composition of (Hf0.5Zr0.5)(56.7)Cu15.3Ni12.5Nb5.0Al10.0Y0.5) were subjected to peak stresses of 4-16 GPa in plate impact experiments and their response was compared to a previously studied Zr-based BAA (nominal composition of Zr56.7Cu15.3Ni12.5Nb5.0Al10.0Y0.5). The (Hf,Zr)-based BAA displayed a Hugoniot elastic limit (HEL) of similar to 7.4GPa corresponding to an elastic strain of 4.3%. (Hf,Zr)-based BAAs shock compressed above the HEL exhibited distinct two wave structures, small elastic precursor relaxation, non-steady plastic waves, and strength loss. All of these features are qualitatively similar to previous observations in various Zr-based BAAs. One dimensional wave propagation simulations incorporating a strain-softening strength model, developed previously for a Zr-based BAA, showed excellent agreement between measured and simulated particle velocity histories for the (Hf,Zr)-based BAA. The only significant differences in the shock wave responses of the (Hf,Zr)-based alloy and the Zr-based alloy are elastic shock velocity and plastic shock velocity differences which are due to the different ambient densities and different elastic moduli for the two alloy compositions. These findings demonstrate that, apart from differences related to ambient density and elastic stiffness, the substitution of Hf for 50% of the Zr did not significantly alter the shock compression response of the (Hf,Zr)-based BAA as compared to the previously examined Zr-based BAA. Based on the results of this study and other relevant data in the literature, it is expected that monolithic BAAs displaying brittle quasi-static compression behavior will likely display shock compression response that is comparable to Zr-based and (Hf,Zr)-based BAAs. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754843]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据