4.6 Article

Charge carrier trapping at passivated silicon surfaces

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 6, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.3555622

关键词

-

向作者/读者索取更多资源

Surface passivation has become an essential factor for translating high-efficiency crystalline silicon solar cell concepts into industrial production schemes. In photovoltaics, a widespread method to determine the surface recombination is to measure the effective charge carrier lifetime from the photoconductance of symmetrically passivated silicon wafers in transient or quasi-static mode. In this work, it is shown how the injection history at the surface influences the transient effective lifetime measurement for several passivation layers. This dependence leads to systematic differences between quasi-static and transient measurements. The influence can be explained by charge trapping in slow surface states at the surface passivation layer. A model including slow surface states is used in a fit procedure to evaluate the capture cross sections of these traps. The observed effect is well-pronounced for silicon-rich passivation layers like a-Si:H, a-SiCx:H or silicon-rich a-SiOxNy:H. For PECVD-AlOx layers and for thermally grown SiO2 layers as well, however, the effective lifetime measurement could be influenced. (C) 2011 American Institute of Physics. [doi:10.1063/1.3555622]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据