4.6 Article

In situ electro-mechanical experiments and mechanics modeling of tensile cracking in indium tin oxide thin films on polyimide substrates

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3592341

关键词

-

资金

  1. Div Of Civil, Mechanical, & Manufact Inn
  2. Directorate For Engineering [0928297, 0928278, 0856540] Funding Source: National Science Foundation

向作者/读者索取更多资源

Indium tin oxide (ITO) thin films supported by polymer substrates have been widely used as transparent electrodes/interconnects in flexible electronics. Understanding the electro-mechanical behaviors of such material system is crucial for reliable operation of flexible devices under large deformation. In this paper, we performed in situ mechanical and electrical tests of ITO thin films with two different thicknesses (200 and 80 nm) deposited on polyimide substrates inside a scanning electron microscope. The crack initiation and propagation, crack density evolution and the corresponding electrical resistance variation were systematically investigated. It was found that cracks initiated at a higher tensile strain level and saturated with a higher density in thinner ITO films. Integrated with a coherently formulated mechanics model, the cohesive toughness and fracture strength of ITO thin films and the ITO/polyimide interfacial toughness were quantitatively determined. The experimentally observed thickness dependence of the saturated crack density in ITO thin films was also quantitatively verified by the model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3592341]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据