4.6 Article

Origin of stress in radio frequency magnetron sputtered zinc oxide thin films

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 6, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3552928

关键词

-

资金

  1. Department of Science and Technology (India)
  2. Department of Innovation, Industry, Science and Research (Australia)
  3. Australian Research Council

向作者/读者索取更多资源

Highly c-axis oriented ZnO thin films have been deposited on silicon substrates by planar rf magnetron sputtering under varying pressure (10-50 mTorr) and oxygen percentage (50-100%) in the reactive gas (Ar + O-2) mixture. The as-grown films were found to be stressed over a wide range from -1 x 10(11) to -2 x 10(8) dyne/cm(2) that in turn depends strongly on the processing conditions, and the film becomes stress free at a unique combination of sputtering pressure and reactive gas composition. Raman spectroscopy and photoluminescence (PL) analyses identified the origin of stress as lattice distortion due to defects introduced in the ZnO thin film. FTIR study reveals that Zn-O bond becomes stronger with the increase in oxygen fraction in the reactive gas mixture. The lattice distortion or stress depends on the type of defects introduced during deposition. PL spectra show the formation of a shoulder in band emission with an increase in the processing pressure and are related to the presence of stress. The ratio of band emission to defect emission decreases with the increase in oxygen percentage from 50 to 100%. The studies show a correlation of stress with the structural, vibrational, and photoluminescence properties of the ZnO thin film. The systematic study of the stress will help in the fabrication of efficient devices based on ZnO film. (C) 2011 American Institute of Physics. [doi:10.1063/1.3552928]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据