4.6 Article

Effect of n-GaN thickness on internal quantum efficiency in InxGa1-xN multiple-quantum-well light emitting diodes grown on Si (111) substrate

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3596592

关键词

-

向作者/读者索取更多资源

The mechanism of the effect of n-GaN thickness on the internal quantum efficiency (IQE) in InxGa1-xN multiple-quantum-wells (MQWs) grown on GaN/Si by means of metal organic chemical vapor deposition has been investigated by x-ray diffractometry, photoluminescence, and transmission electron microscopy. It is found that the increasing n-GaN thickness obviously improves the IQE in InxGa1-xN MQWs. It is clarified that the threading dislocation density (TDD) directly determines the V-defect density and the V-defect density is lower than the TDD. As the n-GaN thickness increases from 1.0 to 2.0 mu m, the TDD significantly decreases by one order of magnitude. The V-defect density obviously reduces from 3.9 x 10(9) cm(-2) to 8.7 x 10(8) cm(-2), while the IQE in InxGa1-xN MQWs is improved from 28.3 to 44.6%. As the GaN thickness increases, the V-defect density in the InxGa1-xN MQW decreases due to the reduction of TDD in GaN, and subsequently the nonradiative recombination centers are effectively eliminated due to the reduction of the V-defect density in the InxGa1-xN MQWs. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3596592]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据