4.6 Article

Physical modeling and implementation scheme of native defect diffusion and interdiffusion in SiGe heterostructures for atomistic process simulation

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3581113

关键词

-

向作者/读者索取更多资源

In order to simulate the diffusion kinetics during thermal treatments in SiGe heterostructures, a physically-based atomistic model including chemical and strain effects has been developed and implemented into a nonlattice atomistic kinetic monte carlo (KMC) framework. This model is based on the description of transport capacities of native point defects (interstitials and vacancies) with different charge states in SiGe alloys in the whole composition range. Lattice atom diffusivities have been formulated in terms of point defect transport, taking into account the different probability to move Si and Ge atoms. Strain effects have been assessed for biaxial geometries including strain-induced anisotropic diffusion, as well as charge effects due to strain-induced modifications of the electronic properties. Si-Ge interdiffusion in heterostructures has been analyzed from an atomistic perspective. A limited set of physical parameters have been defined, being consistent with previously reported ab initio calculations and experiments. The model has been implemented into a nonlattice KMC simulator and the relevant implementation details and algorithms are described. In particular, an efficient point defect mediated Si-Ge exchange algorithm for interdiffusion is reported. A representative set of simulated interdiffusion profiles are shown, exhibiting good agreement with experiments. (C) 2011 American Institute of Physics. [doi:10.1063/1.3581113]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据