4.6 Article

Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3527932

关键词

-

资金

  1. Higher Education Commission (HEC) of Pakistan
  2. Austrian Science Fund (FWF) [(NFN) S10407-N16, S10405-N16]
  3. NAWI-Graz GASS

向作者/读者索取更多资源

Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at T-B = 120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis) order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the frozen low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3527932]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据