4.8 Article

Observation of the rare Bs0→μ+μ- decay from the combined analysis of CMS and LHCb data

期刊

NATURE
卷 522, 期 7554, 页码 68-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/nature14474

关键词

-

资金

  1. CAPES (Brazil)
  2. CNPq (Brazil)
  3. FAPERJ (Brazil)
  4. FINEP (Brazil)
  5. NSFC (China)
  6. CNRS/IN2P3 (France)
  7. BMBF (Germany)
  8. DFG (Germany)
  9. HGF (Germany)
  10. SFI (Ireland)
  11. INFN (Italy)
  12. NASU (Ukraine)
  13. STFC (UK)
  14. NSF (USA)
  15. BMWFW (Austria)
  16. FWF (Austria)
  17. FNRS (Belgium)
  18. FWO (Belgium)
  19. FAPESP (Brazil)
  20. MES (Bulgaria)
  21. CAS (China)
  22. MoST (China)
  23. COLCIENCIAS (Colombia)
  24. MSES (Croatia)
  25. CSF (Croatia)
  26. RPF (Cyprus)
  27. MoER (Estonia)
  28. ERC IUT (Estonia)
  29. ERDF (Estonia)
  30. Academy of Finland (Finland)
  31. MEC (Finland)
  32. HIP (Finland)
  33. CEA (France)
  34. GSRT (Greece)
  35. OTKA (Hungary)
  36. NIH (Hungary)
  37. DAE (India)
  38. DST (India)
  39. IPM (Iran)
  40. NRF (Republic of Korea)
  41. WCU (Republic of Korea)
  42. LAS (Lithuania)
  43. MOE (Malaysia)
  44. UM (Malaysia)
  45. CINVESTAV (Mexico)
  46. CONACYT (Mexico)
  47. SEP (Mexico)
  48. UASLP-FAI (Mexico)
  49. MBIE (New Zealand)
  50. PAEC (Pakistan)
  51. MSHE (Poland)
  52. NSC (Poland)
  53. FCT (Portugal)
  54. JINR (Dubna)
  55. MON (Russia)
  56. RosAtom (Russia)
  57. RAS (Russia)
  58. RFBR (Russia)
  59. MESTD (Serbia)
  60. SEIDI (Spain)
  61. CPAN (Spain)
  62. MST (Taipei)
  63. ThEPCenter (Thailand)
  64. IPST (Thailand)
  65. STAR (Thailand)
  66. NSTDA (Thailand)
  67. TUBITAK (Turkey)
  68. TAEK (Turkey)
  69. SFFR (Ukraine)
  70. DOE (USA)
  71. MPG (Germany)
  72. FOM (The Netherlands)
  73. NWO (The Netherlands)
  74. MNiSW (Poland)
  75. NCN (Poland)
  76. MEN/IFA (Romania)
  77. MinES (Russia)
  78. FANO (Russia)
  79. MinECo (Spain)
  80. SNSF (Switzerland)
  81. SER (Switzerland)
  82. Marie-Curie programme
  83. European Research Council
  84. EPLANET (European Union)
  85. Leventis Foundation
  86. A. P. Sloan Foundation
  87. Alexander von Humboldt Foundation
  88. Belgian Federal Science Policy Office
  89. Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIABelgium)
  90. Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium)
  91. Ministry of Education, Youth and Sports (MEYS) of the Czech Republic
  92. Council of Science and Industrial Research, India
  93. Foundation for Polish Science
  94. European Union, Regional Development Fund
  95. Compagnia di San Paolo (Torino)
  96. Consorzio per la Fisica (Trieste)
  97. MIUR (Italy) [20108T4XTM]
  98. Thalis programme
  99. Aristeia programme
  100. EU-ESF
  101. Greek NSRF
  102. National Priorities Research Program by Qatar National Research Fund
  103. EPLANET
  104. Marie Sklodowska-Curie Actions
  105. ERC (European Union)
  106. Conseil general de Haute-Savoie
  107. Labex ENIGMASS
  108. OCEVU
  109. Region Auvergne (France)
  110. XuntaGal (Spain)
  111. GENCAT (Spain)
  112. Royal Society (UK)
  113. Royal Commission for the Exhibition of 1851 (UK)
  114. Direct For Mathematical & Physical Scien
  115. Division Of Physics [1314131, 1506130, 1505719, 1306040, 1151640, 1120138] Funding Source: National Science Foundation
  116. Division Of Physics
  117. Direct For Mathematical & Physical Scien [1506168, 1306951, 1211067, 1205805] Funding Source: National Science Foundation
  118. Science and Technology Facilities Council [ST/K001604/1, CMS, ST/H006737/1] Funding Source: researchfish
  119. STFC [ST/L003538/1, ST/K00140X/1, ST/J50094X/1, ST/I005912/1, ST/I505580/1, ST/K001302/1, ST/J005665/1, ST/M004775/1, ST/J004901/1, ST/K003542/1, ST/L003112/1, LHCb Upgrades, ST/L003163/1, LHCb, ST/J004332/1, ST/M005356/1, ST/K003410/1, ST/K00137X/1, ST/K003844/1, ST/M001407/1, ST/K000705/1, ST/L005603/1, ST/M000729/1, ST/H006737/1, ST/K001639/1, ST/L001195/1, ST/L00609X/1, PP/E000355/1, ST/K001604/1, ST/H00081X/2, ST/H00100X/2, ST/H00100X/1] Funding Source: UKRI

向作者/读者索取更多资源

The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据