4.8 Article

Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments

期刊

NATURE
卷 528, 期 7581, 页码 276-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature15727

关键词

-

资金

  1. Ente Cassa di Risparmio di Firenze [2010.1402]
  2. FIRB-Futuro in Ricerca project [RBFR08JAMZ]
  3. MIUR-PRIN project (Italy) [2010R8JK2X]
  4. MRC (UK)
  5. ESRF
  6. MRC [G0601065] Funding Source: UKRI
  7. Medical Research Council [G0601065] Funding Source: researchfish

向作者/读者索取更多资源

Contraction of both skeletal muscle and the heart is thought to be controlled by a calcium-dependent structural change in the actin-containing thin filaments, which permits the binding of myosin motors from the neighbouring thick filaments to drive filament sliding(1-3). Here we show by synchrotron small-angle X-ray diffraction of frog (Rana temporaria) single skeletal muscle cells that, although the well-known thin-filament mechanism is sufficient for regulation of muscle shortening against low load, force generation against high load requires a second permissive step linked to a change in the structure of the thick filament. The resting (switched 'OFF') structure of the thick filament is characterized by helical tracks of myosin motors on the filament surface and a short backbone periodicity(2,4,5). This OFF structure is almost completely preserved during low-load shortening, which is driven by a small fraction of constitutively active (switched 'ON') myosin motors outside thick-filament control. At higher load, these motors generate sufficient thick-filament stress to trigger the transition to its long-periodicity ON structure, unlocking the major population of motors required for high-load contraction. This concept of the thick filament as a regulatory mechanosensor provides a novel explanation for the dynamic and energetic properties of skeletal muscle. A similar mechanism probably operates in the heart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据