4.6 Article

Super-high-frequency shielding properties of excimer-laser-synthesized-single-wall-carbon-nanotubes/polyurethane nanocomposite films

期刊

JOURNAL OF APPLIED PHYSICS
卷 109, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3574443

关键词

-

资金

  1. FQRNT (Le Fonds Quebecois de la Recherche sur la Nature et les Technologies)
  2. Natural Science and Engineering Research Council (NSERC) of Canada

向作者/读者索取更多资源

Electromagnetic shielding attenuation (ESA) properties of carbon nanotubes/polymer nanocomposite films, in the super high frequency (SHF) X-band (7-12 GHz) domain are studied. The nanocomposite films consisted of thermoset polyurethane (PU) resin blended with single-walled carbon nanotubes (SWCNTs) mats, and deposited on fused quartz substrates. Two different approaches were used to achieve the nanocomposite films, namely (i) through the on-substrate all-laser growth approach of SWCNTs directly onto substrate, followed by their infiltration by the PU resin, and (ii) by appropriately dispersing the chemically-purified SWCNTs (in the soot form) into the PU matrix and their subsequent deposition onto quartz substrates by means of a solvent casting process. Characterizations of the ESA properties of the developed nanocomposite films show that they exhibit systematically a deep shielding band, centered at around 9.5 GHz, with an attenuation as high as vertical bar-30 vertical bar dB, recorded for SWCNT loads of 2.5 wt. % and above. A direct correlation is established between the electrical conductivity of the nanocomposite films and their electromagnetic shielding capacity. The SWCNTs/PU nanocomposites developed here are highly promising shielding materials as SHF notch filters, as their ESA capacity largely exceeds the target value of vertical bar-20 vertical bar dB generally requested for commercial applications. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3574443]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据